Vector Bundles on a K3 Surface

نویسنده

  • Shigeru Mukai
چکیده

A K3 surface is a quaternionic analogue of an elliptic curve from a view point of moduli of vector bundles. We can prove the algebraicity of certain Hodge cycles and a rigidity of curve of genus eleven and gives two kind of descriptions of Fano threefolds as applications. In the final section we discuss a simplified construction of moduli spaces. 2000 Mathematics Subject Classification: 14J10, 14J28, 14J60.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ACM line bundles on polarized K3 surfaces

An ACM bundle on a polarized algebraic variety is defined as a vector bundle whose intermediate cohomology vanishes. We are interested in ACM bundles of rank one with respect to a very ample line bundle on a K3 surface. In this paper, we give a necessary and sufficient condition for a non-trivial line bundle OX(D) on X with |D| 6= ∅ and D 2 ≥ L − 6 to be an ACM and initialized line bundle with ...

متن کامل

Automorphisms of K 3 Surfaces

In this note, we report some progress we made recently on the automorphisms groups of K3 surfaces. A short and straightforward proof of the impossibility of Z/(60) acting purely non-symplectically on a K3 surface, is also given, by using Lef-schetz fixed point formula for vector bundles.

متن کامل

Rational equivalence of 0-cycles on K3 surfaces and conjectures of Huybrechts and O’Grady

We give a new interpretation of O’Grady’s filtration on the CH0 group of a K3 surface. In particular, we get a new characterization of the canonical 0-cycles kcX : given k ≥ 0, kcX is the only 0-cycle of degree k on X whose orbit under rational equivalence is of dimension k. Using this, we extend results of Huybrechts and O’Grady concerning Chern classes of simple vector bundles on K3 surfaces.

متن کامل

Brill-Noether theory on singular curves and vector bundles on K3 surfaces

Let C be a smooth curve. Let W r d be the Brill-Noether locus of line bundles of degree d and with r + 1 independent sections. W r d has a expected dimension ρ(r, d) = g − (r + 1)(g − d + r). If ρ(r, d) > 0 then Fulton and Lazarsfeld have proved that W r d is connected. We prove that this is still true if C is a singular irreducible curve lying on a regular surface S with −KS generated by globa...

متن کامل

An Application of Exceptional Bundles to the Moduli of Stable Sheaves on a K3 Surface

Let X be a smooth projective surface defined over C and L an ample divisor on X. For a coherent sheaf E on X, let v(E) := ch(E) √ Td(X) ∈ H∗(X,Q) be the Mukai vector of E, where Td(X) is the Todd class of X. We denote the moduli of stable sheaves of Mukai vector v by ML(v), where the stability is in the sense of Simpson [S]. For a regular surface X, exceptional vector bundles which were introdu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002